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Abstract
Humans have developed complex rule-based systems to
explain and exploit the world around them. When a
learner has already mastered a system’s core dynamics—
identifying its primitives and their interrelations—further
learning can be effectively modeled as discovering useful
compositions of these primitives. It nevertheless remains
unclear how the dynamics themselves might initially be
acquired. Composing primitives is no longer a viable
strategy, as the primitives themselves are what must be
explained. To explore this problem, we introduce and as-
sess a novel concept learning paradigm in which partici-
pants use a two-alternative forced-choice task to learn an
unfamiliar rule-based conceptual system: the MUI sys-
tem (Hofstadter, 1980). We show that participants re-
liably learn this system given a few dozen examples of
the system’s rules, leaving open the mechanism by which
novel conceptual systems are acquired but providing a
useful paradigm for further study.
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Introduction
The puzzle of human learning and cognitive
development—how humans learn so much from so
little (data) so quickly—is central to cognitive science
(Tenenbaum, Kemp, Griffiths, & Goodman, 2011). Part
of the solution appears to be that humans develop sys-
tems in which concepts can be represented and reasoned
about productively (Carey, 2009; Fodor, 1975; Smith
& Medin, 1981). These conceptual systems support
many of humanity’s great cultural achievements: law,
science, government & social cooperation, mathematics,
language & literature, etc.

Despite concepts’ diverse forms and contents (e.g. ob-
jects, agents, magnitudes, categories and kinds, relation-
ships, and events), one striking feature of conceptual sys-
tems is that they often appear to be well described as
rule-based systems (Table 1). By rule-based, we mean
that the behavior of the system can be described as a set
of conditional transformations (i.e. If X , then Y ) applied
over a set of objects. That so many and such widely
varying domains should be appropriately described us-
ing rules is remarkable, even surprising (e.g. Hamming,
1980; Wigner, 1960). Nonetheless, computationally pre-
cise, rule-based descriptions—i.e. programs—remain a
powerful tool for representing knowledge.

The exact substrate of rule-based thinking remains un-
clear. Human learning and cognition may, for example,

Domain Examples
logic first-order, modal, & deontic logic
mathematics counting, algebra, topology
scientific theories Mendelian genetics, mechanics
productivity systems Inbox Zero, Getting Things Done
operating procedures Robert’s Rules, codes of conduct
games & sports Go, football, 8 queens
norms & mores class systems, social cliques
legal codes constitutions, contracts, civil code
religious systems monastic orders, vows, rituals
mundane chores tying shoes, mowing lawns
intuitive theories theory of mind, intuitive physics
kinship family trees, clan systems
domain theories cooking, lockpicking, carpentry

Table 1: A sampling of domains well described using
rule-based systems, with motivating examples.

rely primarily on distributed or subsymbolic representa-
tions (LeCun, Bengio, & Hinton, 2015; Rumelhart, Mc-
Clelland, & PDP Research Group, 1987), with rules be-
ing a recent and difficult-to-use innovation for storing,
transmitting, and applying knowledge. Alternatively,
rules may be basic mental representations but difficult to
acquire. In that case, rules may be stored and applied pri-
marily through innate, domain-specific resources devel-
oped on an evolutionary timescale (Fodor, 1975, 1981;
Laurence & Margolis, 2002). A third option is that rules
are a basic representational tool and that mechanisms for
acquiring new rules are essential to human-like learning.

Whatever the case, recent progress has been made in
modeling human learning and cognition by treating con-
cepts as programs in a mental programming language
such that learning new concepts maps onto discovering
new and useful programs (Anderson, 2009; Goodman,
Tenenbaum, Feldman, & Griffiths, 2008; Klahr, Lang-
ley, & Neches, 1987; Lake, Salakhutdinov, & Tenen-
baum, 2015; Lenat, 1983; Newell, Shaw, & Simon, 1959;
Piantadosi, Tenenbaum, & Goodman, 2016; Sussman,
1973). These models learn programs from observations,
a technique known as inductive programming (Flener &
Schmid, 2008; Muggleton & De Raedt, 1994), part of the
broader field of program synthesis (Gulwani, Polozov, &
Singh, 2017). The collective success of these models in
explaining human performance on multiple tasks across
many domains is strong evidence for program-like, and



Rule Example

"Mx"→"Mxx" "MIU"→ "MIUIU"
III→U "UIIIM"→ "UUM"
UU→ ε "IUUMI"→ "IMI"
I"→IU" "MUMI"→ "MUMIU"

Table 2: Douglas Hofstadter’s MUI system transforms
strings composed of three symbols M, U, and I according
to the four rules above. In our paradigm, these symbols
were mapped to colored dots (M 7→ , U 7→ , I 7→ ).

thus rule-based, conceptual representations.
This prior work, however, assumes the set of rules af-

fecting objects is pre-established by a fixed grammar or
programming language. Learning is primarily searching
through the space to find a specific program or combina-
tion of rules to explain observations. This differs from a
problem children (and professional scientists, see Gop-
nik, 1996), often face when learning: searching to ex-
plain observations while simultaneously developing the
language or set of rules through which to search (Carey,
2009). In kinship, for example, children must first de-
velop concepts of gender, marriage, and parent-child re-
lationships before they can understand terms like grand-
parent or in-law. In number, children must discover the
natural numbers themselves to explain the usefulness of
previously learned routines like counting. This sort of
conceptual change is what we seek to study.

In this work, we use an unfamiliar rule-based sys-
tem explicitly constructed to require mastering new rules
in a new domain and test naive participants’ ability to
learn its dynamics. This means that to succeed, partic-
ipants must induce the grammar and rules themselves
rather than simply composing pre-existing primitives.
We specifically use the MUI system introduced by Dou-
glas Hofstadter (1980). The concepts in MUI are strings
of three symbols, M, U, and I, which can be transformed
using four simple rules (Table 2). While Hofstadter orig-
inally used the system to illustrate certain points about
provability, we use it here for its balance of novelty and
simplicity. Its rules are novel and not obviously drawn
from other systems with which participants are likely to
be familiar (e.g. number, kinship), but simple enough
that they could conceivably be learned from examples in
a single sitting (i.e. not rocket science).

We introduce a novel concept learning paradigm built
around a game in which participants help scientists to un-
lock doors in an alien labyrinth. Each lock face presents a
Two-Alternative Forced-Choice (2AFC) triad which can
be correctly solved by applying the MUI rules to select
one of the two alternatives given the prompt. Using this
paradigm we find that: 1) participants reliably learned
this system given a few dozen examples of the system’s
rules; 2) there was significant variation in how easily

Figure 1: Task overview: Each lock face has a chal-
lenge (top row) and two responses (one correct and one
incorrect, randomly ordered). Correct (green) and in-
correct (red) feedback is shown for previous trials and
the current trial (trial 91) is at the bottom of the display;
From top to bottom, the four lock faces use rules UU→ ε,
I"→IU", III→U, and "Mx"→"Mxx", respectively.

individual rules were acquired; 3) there was significant
variation in both how quickly and how reliably individual
participants learned; and 4) participants spontaneously
used rule-based language to describe what they learned.

Experiment

This experiment studied how people learn a system of
rule-based concepts from examples. Participants repeat-
edly predicted how the system would transform an input
sequence into an output sequence, choosing between one
of two alternatives. Because our focus was on testing for
learnability, we introduced participants to the conceptual
system gradually, introducing one new rule at a time until
the entire system had been presented.
Participants and Design We recruited 100 partici-
pants (49 female; 48 male; 2 other; 1 NA; age mean:
36.77yrs, sd: 10.49yrs) from Amazon Mechanical Turk.
Participants were paid a flat fee of $3 and up to $4.14 in
bonuses (losing $0.01 for each incorrect response; mean:
$6.29, min: $4.83, max: $7.12, std: $0.55). The exper-
iment took 36.50 minutes on average to complete (min:
15.07min, max: 126.15min, std: 19.37min).



Figure 2: Mean performance (y-axis) by block (x-axis)
by rule (individual curves). The black line aggregates
across rules. CIs are 95% binomial confidence intervals.

Materials and Procedure Participants played a 2AFC
game in which they were asked to help a team of scien-
tists study locked doors in an alien labyrinth. Each lock
contained three rows of colorful dots. Dot sequences
were used in liu of strings of M, U, and I to further accen-
tuate the novelty and avoid associations with character-
based string manipulations used in natural language or
mathematics (M 7→ , U 7→ , I 7→ ). The top row was
called the challenge, and the bottom rows were called re-
sponses. The exact sequences of dots changed on each
attempt to unlock the door; a specific combination of
challenge and responses was called a lock face. Each
lock face always had one correct response and one in-
correct response. Choosing the correct response would
unlock the door, but an incorrect response would leave
the door locked and advance the lock to a new lock face.

On each trial, participants saw a unique lock face and
attempted to choose the correct response. The challenge
contained one to nine dots. The correct response was the
result of a single application of one of the four rules of
the MUI system to the challenge. The incorrect response
was created by selecting a dot sequence which matched
the correct response both in length and in edit distance
from the challenge. Participants were told that locks con-
tained several mechanisms, and for each lock face, one
of these mechanisms created the correct response to the
challenge. Crucially, participants were never given ex-
ample descriptions of specific mechanisms nor told that
each mechanism could be described using simple rules.

After choosing a response, participants received visual
and written feedback. Incorrect responses also incurred a

Figure 3: Testing block performance assessing partici-
pant rule-learning. Rules are considered learned if χ2 test
over performance on a rule in the testing block is signif-
icant at p<0.05 level. Number of participants (y-axis)
who learned: (Left) each of N rules (x-axis); (Right)
each rule (x-axis).

four-second delay. Past trials and feedback accumulated
on screen with the current trial always displayed at the
bottom of the screen along with a performance summary.

Participants completed five blocks of trials: four train-
ing blocks followed by a testing block. Each partici-
pant training block introduced a single new rule from
the MUI system; we refer to this as the target rule and
trials using this rule as target trials. The order in which
rules were introduced was randomized for each partici-
pant. Each block contained 50 target trials and 50 other
trials drawn uniformly from the previously learned rules.
The first block, having no previously learned rules thus
contained just 50 trials, while the other training blocks
contained 100 trials. The order of trials within the block
was randomized, save that the final trial was always a
target trial. Participants could end a block early by cor-
rectly responding to 9 out of 10 consecutive target tri-
als. The testing block contained 16 trials for each rule
for a total of 64 trials, randomly ordered. Participants
were not explicitly informed of this structure but were
told that a lock’s mechanisms would activate gradually.
They were informed each time a new block started, being
told that a new mechanism had activated and reminded of
the total number of active mechanisms. They were never
told which mechanism a particular lock face used. Af-
ter completing all five blocks, participants were asked to
complete a post-task survey reporting how they thought
each mechanism worked.



Figure 4: Individual variation for 18 participants. The
top, middle, and bottom rows of each subplot contain
the top, middle, and bottom 6 participants, respectively,
by testing block performance. (Top) Number of target
trials (y-axis) for each training block (x-axis). There are
a maximum of 50 target trials per block; (Bottom) Mean
performance (y-axis) by rule (individual curves) by block
(x-axis).

Results Participants completed a 2AFC task in which
they were asked to predict which of two sequences of
dots could be derived from a prompt sequence. Par-
ticipants found the task difficult (self-reported difficulty
on 7-point Likert Scale, 1: not difficult, 7: very diffi-
cult, mean: 5.29, sd: 1.34) but extremely engaging (self-
reported engagement on 7-point Likert Scale, 1: not en-
gaging, 7: very engaging, mean: 6.22, sd: 1.25).

Participants reliably learned the system. Mean ac-
curacy across all rules and all training blocks was 0.651,
significantly above chance (χ2(1)=1763.7, p<0.001,
95% CI=[0.644, 0.658]). Mean accuracy in the test-
ing block was also significantly above chance at .729
(χ2(1)=1338.6, p<0.001, 95% CI=[.718, .740]). This
level of performance was significantly higher than in the
training blocks (Figure 2; χ2(1)=130.62, p<0.001, 95%
CI=[0.065 0.090]). 77 individual participants performed
significantly above chance in the testing block, which is
unlikely to occur by chance (Figure 5; χ2(100)=1833.9,
p<0.001). Performance was also significantly better than
chance in the testing block for all four rules (Table 3).
The mean (sd) participant performed better than chance
on 2.56 (1.17) rules in the testing block, with 26 in-
dividual participants learning all 4 rules, 26 learning 3
rules, 34 learning 2 rules, 6 learning 1 rule, and just

Figure 5: Testing block cumulative performance (y-axis)
for each trial (x-axis) by participant (individual curves).
The gray region is a 95% binomial confidence interval
around chance performance. The histogram shows how
many participants performed at each level.

8 failing to learn any rules (Figure 3, Left). 85 people
learned "Mx"→"Mxx", 87 learned I"→IU", 53 learned
III→U, and 31 learned UU→ ε (Figure 3, Right; Table
3). Looking just at target trials (i.e. trials for the rule
being learned during a training block), participants com-
pleted significantly less than the ceiling of 50 trials in
each block (ps<0.001; mean [95% CI] for block 0: 24.7
[21.5, 27.8]; 1: 26.8 [23.6, 30.1]; 2: 29.0 [25.4, 32.6]; 3:
28.5 [25.0, 32.0]). Learning the dynamics of each new
rule is what allowed them to end blocks early.

There was significant variation in how easily spe-
cific rules were acquired. Performance in the train-
ing blocks differed significantly by rule (χ2(3)=586.39
p<0.001), being significantly better for trials using
the rules "Mx"→"Mxx" and I"→IU" than those us-
ing III→U or UU→ ε (χ2(1)>200, ps<0.001), and
for trials using III→U than those using UU→ ε, al-
though the difference was small (χ2(1)=7.686, p=0.006,
95% CI=[0.008, 0.0447]). Performance between
"Mx"→"Mxx" and I"→IU" was not significantly dif-
ferent (χ2(1)=0.037, p=0.848). Participant performance
in the testing block similarly differed (χ2(3)=400.06,
p<0.001), being significantly better for trials using
the rules "Mx"→"Mxx" and I"→IU" than III→U
or UU→ ε (χ2(1)>140, ps<0.001) and for trials us-
ing III→U than those using UU→ ε (χ2(1)=12.22,
p<0.001, 95% CI=[0.026, 0.095]). Performance be-
tween "Mx"→"Mxx" and I"→IU" was not significantly
different (χ2(1)=0.083, p=0.774).



A two-way repeated-measures ANOVA showed a
main effect of rule (F(3)=12.976, p<0.001) and of block
(F(1)=6.713, p=0.010) but no interaction (F(3)=2.090,
p=0.101). These results suggest that the number of tri-
als required to learn a new rule increased as the com-
plexity of the task increased and, critically, that the num-
ber of trials required to learn a new rule also differed
significantly by rule. Pairwise comparisons show that
"Mx"→"Mxx" and I"→IU" both require significantly
fewer trials than UU→ ε or III→U (ps<0.001), and
III→U requires fewer trials than UU→ ε (p=0.037), but
that the number of trials needed for "Mx"→"Mxx" and
I"→IU" did not significantly differ (p=0.972).

There was significant variation in how quickly
and reliably participants learned Because participants
could end blocks early through accurate performance,
difference in block length reflect differences in learn-
ing. Participants completed 52–350 training trials and
64 testing trials with a mean±sd of 192.98±79.18 tri-
als (block 0: 24.7±15.6; 1 53.6±33.5; 2: 57.8±36.6;
3: 56.9±35.6). The number of target trials per block
also varied significantly by participant (F(3)=1.988,
p<0.001). This effect can be seen visually by examin-
ing the number of target trials required in each training
block for different participants (Figure 4, Top). High-
performers (as judged by test performance) require very
few target trials to master each rule and complete each
training block, mid-range performers sometimes learn
quickly and other times slowly, and low-performers al-
most invariably hit the ceiling of 50 target trials. Per-
formance in the testing block also varied significantly
by participant (χ2(99)=625.17, p<0.001). As with block
length, this effect can be seen by comparing the behav-
ior of individual participants (Figure 4, Bottom). High-
performers always perform well above chance and hav-
ing learned a rule once, tend to perform well on all future
trials using that rule. Mid-range performers sometimes
learn and remember a rule and other times appear to for-
get. Low-performers rarely perform above chance for
more than a single block and frequently perform below
chance.

Participants spontaneously used rule-based lan-
guage. While our main focus in this work was assess-
ing learnability through performance, we asked partic-
ipants to verbally report at the close of the experiment
how they thought each mechanism worked. Participants
were neither shown descriptions of specific mechanisms
nor told participants that each mechanism could be de-
scribed using simple rules. Their freeform descriptions,
then, provide some insight into the structure of the men-
tal representations they used to solve the task. Partic-
ipants described the lock mechanisms in various ways,
but consistently used rule-like language (Table 4). Not
all participants, however, were able to articulate their

Rule Mean 95% CI Learned

"Mx"→"Mxx" 0.84 [0.821, 0.857] 85
I"→IU" 0.84 [0.817, 0.853] 87
III→U 0.65 [0.626, 0.673] 53
UU→ ε 0.59 [0.565, 0.613] 31

Table 3: Test performance by rule, reporting the mean
accuracy (out of 1600 trials), a 95% χ2 confidence inter-
val, and the number of participants who performed above
chance for this rule. Crucially, performance across par-
ticipants is above chance for all rules (ps<0.001).

understanding in rule-based language. One participant
in the top quartile, for example, said that, “you have to
memorize which sequence opens which lock” (i.e. there
was no clear pattern or rule). Given that each trial was
unique, however, memorization would not have proven
helpful. Another claimed, “The mechanisms seemed to
be generated at random by a binary sequence.”

Discussion & Conclusion
We explored the question of how human learners acquire
a novel conceptual system. To do so, we introduced and
assessed a gamed-based paradigm in which participants
made repeated 2AFC predictions with feedback to ac-
quire an unfamiliar rule-based conceptual system: the
MUI system. We found that: 1) participants, as a whole,
reliably learned the system; 2) there was significant vari-
ation in how easily individual rules were acquired; 3)
there was significant variation in both how quickly and
how reliably individual participants learned; and 4) par-
ticipants spontaneously used rule-based language to de-
scribe what they had learned, whether or not their un-
derstanding matched the underlying MUI system. While
this is a preliminary investigation, these results suggest
that humans are able to rapidly explain observations of
novel rule-based systems while simultaneously learning
the underlying rules of the system.

This work is limited in several important ways. First,
rule-based conceptual systems are often difficult to ac-
quire. Many participants, even after extensive practice,
did not learn 1 or more rules and/or performed at chance
in the testing block. Studies in the history of science
and developmental psychology further suggest that many
important theories and conceptual systems (e.g. num-
ber, classical mechanics) were painfully constructed over
centuries and are acquired only with difficulty over the
course of many years (see e.g. Carey, 2009). While the
difficulty of discovering and/or acquiring a conceptual
system like number can be partially explained by the
scope of the problem, MUI is a relatively simple sys-
tem. More work is needed to explain the variability in
performance on this task.

Second, we have not explained why rules of seem-



"Mx"→"Mxx"

1. The pattern of dots following the starting color is to be
repeated exactly.
2. The original string + the original string minus the first
colored circle.
3. Another of the mechanisms mirrored the sequence on the
end of it.

I"→IU"

1. Add an orange dot to the end.
2. Copies the original challenge then ends with an orange
dot.
3. One of the mechanisms adds a orange circle at the end.

III→U

1. 3 purple circles were converted into 1 orange circle.
2. The final mechanism combined three blue dots to make
one orange dot.
3. Choose the answer that as is the same as the face, only 3
purple can = 1 orange.

UU→ ε

1. Subtracted two orange dots from the sequence.
2. Minus two reds.
3. sometime 2 orange ones are took away and thats the right
answer.

Other
1. Pick the one that looked most like the original.
2. Choose one where the first circle and the last circle are
each the same as on the lock face.
3. I thought it depended on where the green one was in
relation to the orange one.

Table 4: Representative participant descriptions of the
mechanisms of participants. Correct or incorrect, par-
ticipants described looking for patterns or rules and fre-
quently used rule-based language.

ingly similar syntactic complexity differ dramatically in
learnability. One explanation may be that MUI contains
multiple types of rules. "Mx"→"Mxx" and I"→IU" are
both additive—they add characters to the string with-
out removing characters—and UU→ ε is subtractive—
removing one or more characters from the string. III→
U is a hybrid, replacing one set of characters with another.
At the same time, "Mx"→"Mxx" and I"→IU" both ap-
ply in only a single place within a string. "Mx"→"Mxx"
applies to an entire string, and I"→IU" applies only at
the end of a string. III→U and UU→ ε, by contrast, can
both apply anywhere within a string and perhaps in mul-
tiple places. While we started our exploration of rule-
based learning with a known system, future work should
more carefully tease apart the many classes of rules to
understand how rule structure affects learnability.

Third, MUI is a string transformation system, and
strings are simple structures compared even to other for-
mal structures like trees or graphs, much less to natu-
ralistic structures like natural kinds or events. Adapting
this paradigm to work over many kinds of structures, in-
cluding these more complex varieties, could significantly

strengthen the approach taken in this paper.
Fourth, most conceptual systems are acquired in en-

vironments affording significantly richer interaction and
exploration than our tightly controlled paradigm. We
are exploring alternatives in which participants can bet-
ter control their own learning through self-supervision
(choosing from a set of possible next problems) and ac-
tive learning (creating their own problems to solve).

Perhaps the most significant limitation, however, is
that we lack a computationally precise model of human
performance on this and similar tasks. We have not
yet developed an adequate model of how humans learn
novel conceptual systems. We are actively working to-
ward such a model based on the term rewriting formal-
ism (Bezem, Klop, & de Vrijer, 2003) and building on
previous work (Rule, Schulz, Piantadosi, & Tenenbaum,
2018; Schmid, Hofmann, & Kitzelmann, 2009).
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